1 Introduction

We always denote by X our universe, i.e. all the sets we shall consider are subsets of X.

Recall some standard notation. 2^X everywhere denotes the set of all subsets of a given set X. If $A \cap B = \emptyset$ then we often write $A \cup B$ rather than $A \cup B$, to underline the disjointness. The complement (in X) of a set A is denoted by A^c. By $A \triangle B$ the symmetric difference of A and B is denoted, i.e. $A \triangle B = (A \setminus B) \cup (B \setminus A)$. Letters i, j, k always denote positive integers. The sign $↾$ is used for restriction of a function (operator etc.) to a subset (subspace).

1.1 The Riemann integral

Recall how to construct the Riemannian integral. Let $f : [a, b] \rightarrow \mathbb{R}$. Consider a partition π of $[a, b]$:

$$ a = x_0 < x_1 < x_2 < \ldots < x_{n-1} < x_n = b $$

and set $\Delta x_k = x_{k+1} - x_k$, $|\pi| = \max\{\Delta x_k : k = 0, 1, \ldots, n - 1\}$, $m_k = \inf\{f(x) : x \in [x_k, x_{k+1}]\}$, $M_k = \sup\{f(x) : x \in [x_k, x_{k+1}]\}$. Define the upper and lower Riemann—Darboux sums

$$ \underline{s}(f, \pi) = \sum_{k=0}^{n-1} m_k \Delta x_k, \quad \overline{s}(f, \pi) = \sum_{k=0}^{n-1} M_k \Delta x_k. $$

One can show (the Darboux theorem) that the following limits exist

$$ \lim_{|\pi| \rightarrow 0} \underline{s}(f, \pi) = \sup_{\pi} \underline{s}(f, \pi) = \int_a^b f \, dx $$

$$ \lim_{|\pi| \rightarrow 0} \overline{s}(f, \pi) = \inf_{\pi} \overline{s}(f, \pi) = \int_a^b f \, dx. $$
Clearly,
\[s(f, \pi) \leq \int_a^b f \, dx \leq \int_a^b \bar{s}(f) \leq \bar{s}(f, \pi) \]
for any partition \(\pi \).

The function \(f \) is said to be Riemann integrable on \([a, b]\) if the upper and lower integrals are equal. The common value is called Riemann integral of \(f \) on \([a, b]\).

The functions cannot have a large set of points of discontinuity. More precisely this will be stated further.

1.2 The Lebesgue integral

It allows to integrate functions from a much more general class. First, consider a very useful example. For \(f, g \in C[a, b] \), two continuous functions on the segment \([a, b] = \{ x \in \mathbb{R} : a \leq x \leq b \}\) put
\[
\rho_1(f, g) = \max_{a \leq x \leq b} |f(x) - g(x)|,
\]
\[
\rho_2(f, g) = \int_a^b |f(x) - g(x)| \, dx.
\]

Then \((C[a, b], \rho_1)\) is a complete metric space, when \((C[a, b], \rho_2)\) is not. To prove the latter statement, consider a family of functions \(\{\varphi_n\}_{n=1}^{\infty} \) as drawn on Fig.1. This is a Cauchy sequence with respect to \(\rho_2 \). However, the limit does not belong to \(C[a, b] \).
2 Systems of Sets

Definition 2.1 A ring of sets is a non-empty subset in 2^X which is closed with respect to the operations \cup and \setminus.

Proposition. Let \mathcal{R} be a ring of sets. Then $\emptyset \in \mathcal{R}$.

Proof. Since $\mathcal{R} \neq \emptyset$, there exists $A \in \mathcal{R}$. Since \mathcal{R} contains the difference of every two its elements, one has $A \setminus A = \emptyset \in \mathcal{R}$. ■

Examples.

1. The two extreme cases are $\mathcal{R} = \{\emptyset\}$ and $\mathcal{R} = 2^X$.

2. Let $X = \mathbb{R}$ and denote by \mathcal{R} all finite unions of semi-segments $[a, b)$.

Definition 2.2 A semi-ring is a collection of sets $\mathcal{P} \subset 2^X$ with the following properties:

1. If $A, B \in \mathcal{P}$ then $A \cap B \in \mathcal{P}$;
2. For every $A, B \in \mathcal{P}$ there exists a finite disjoint collection $(C_j)\ j = 1, 2, \ldots, n$ of sets (i.e. $C_i \cap C_j = \emptyset$ if $i \neq j$) such that

$$A \setminus B = \bigsqcup_{j=1}^{n} C_j.$$

Example. Let $X = \mathbb{R}$, then the set of all semi-segments, $[a, b)$, forms a semi-ring.

Definition 2.3 An algebra (of sets) is a ring of sets containing $X \in 2^X$.

Examples.

1. $\{\emptyset, X\}$ and 2^X are the two extreme cases (note that they are different from the corresponding cases for rings of sets).

2. Let $X = [a, b)$ be a fixed interval on \mathbb{R}. Then the system of finite unions of subintervals $[\alpha, \beta) \subset [a, b)$ forms an algebra.

3. The system of all bounded subsets of the real axis is a ring (not an algebra).

Remark. \mathfrak{A} is algebra if (i) $A, B \in \mathfrak{A} \implies A \cup B \in \mathfrak{A}$, (ii) $A \in \mathfrak{A} \implies A^c \in \mathfrak{A}$.

Indeed, 1) $A \cap B = (A^c \cup B^c)^c$; 2) $A \setminus B = A \cap B^c$.

Definition 2.4 A σ-ring (a σ-algebra) is a ring (an algebra) of sets which is closed with respect to all countable unions.

Definition 2.5 A ring (an algebra, a σ-algebra) of sets, $\mathfrak{A}(\mathfrak{U})$ generated by a collection of sets $\mathfrak{U} \subset 2^X$ is the minimal ring (algebra, σ-algebra) of sets containing \mathfrak{U}.

In other words, it is the intersection of all rings (algebras, σ-algebras) of sets containing \mathfrak{U}.
3 Measures

Let X be a set, \mathfrak{A} an algebra on X.

Definition 3.1 A function $\mu : \mathfrak{A} \rightarrow \mathbb{R}_+ \cup \{\infty\}$ is called a measure if

1. $\mu(A) \geq 0$ for any $A \in \mathfrak{A}$ and $\mu(\emptyset) = 0$;
2. if $(A_i)_{i \geq 1}$ is a disjoint family of sets in \mathfrak{A} ($A_i \cap A_j = \emptyset$ for any $i \neq j$) such that $\bigcup_{i=1}^{\infty} A_i \in \mathfrak{A}$, then

 $$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \sum_{i=1}^{\infty} \mu(A_i).$$

The latter important property, is called *countable additivity* or *σ-additivity* of the measure μ.

Let us state now some elementary properties of a measure. Below till the end of this section \mathfrak{A} is an algebra of sets and μ is a measure on it.

1. (Monotonicity of μ) If $A, B \in \mathfrak{A}$ and $B \subset A$ then $\mu(B) \leq \mu(A)$.

 Proof. $A = (A \setminus B) \cup B$ implies that
 $$\mu(A) = \mu(A \setminus B) + \mu(B).$$

 Since $\mu(A \setminus B) \geq 0$ it follows that $\mu(A) \geq \mu(B)$.

2. (Subtractivity of μ). If $A, B \in \mathfrak{A}$ and $B \subset A$ and $\mu(B) < \infty$ then $\mu(A \setminus B) = \mu(A) - \mu(B)$.

 Proof. In 1) we proved that
 $$\mu(A) = \mu(A \setminus B) + \mu(B).$$

 If $\mu(B) < \infty$ then
 $$\mu(A) - \mu(B) = \mu(A \setminus B).$$

3. If $A, B \in \mathfrak{A}$ and $\mu(A \cap B) < \infty$ then $\mu(A \cup B) = \mu(A) + \mu(B) - \mu(A \cap B)$.

 Proof. $A \cap B \subset A, A \cap B \subset B$, therefore
 $$A \cup B = (A \setminus (A \cap B)) \cup B.$$

 Since $\mu(A \cap B) < \infty$, one has
 $$\mu(A \cup B) = (\mu(A) - \mu(A \cap B)) + \mu(B).$$
4. (Semi-additivity of μ). If $(A_i)_{i \geq 1} \subset \mathcal{A}$ such that $\bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$ then

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) \leq \sum_{i=1}^{\infty} \mu(A_i).$$

Proof. First let us prove that

$$\mu\left(\bigcup_{i=1}^{n} A_i\right) \leq \sum_{i=1}^{n} \mu(A_i).$$

Note that the family of sets

$$B_1 = A_1$$
$$B_2 = A_2 \setminus A_1$$
$$B_3 = A_3 \setminus (A_1 \cup A_2)$$
$$\ldots$$
$$B_n = A_n \setminus \bigcup_{i=1}^{n-1} A_i$$

is disjoint and $\bigcup_{i=1}^{n} B_i = \bigcup_{i=1}^{n} A_i$. Moreover, since $B_i \subset A_i$, we see that $\mu(B_i) \leq \mu(A_i)$. Then

$$\mu\left(\bigcup_{i=1}^{n} A_i\right) = \mu\left(\bigcup_{i=1}^{n} B_i\right) = \sum_{i=1}^{n} \mu(B_i) \leq \sum_{i=1}^{n} \mu(A_i).$$

Now we can repeat the argument for the infinite family using σ-additivity of the measure.

3.1 Continuity of a measure

Theorem 3.1 Let \mathcal{A} be an algebra, $(A_i)_{i \geq 1} \subset \mathcal{A}$ a monotonically increasing sequence of sets $(A_i \subset A_{i+1})$ such that $\bigcup_{i\geq 1} \in \mathcal{A}$. Then

$$\mu\left(\bigcup_{i=1}^{\infty} A_i\right) = \lim_{n \to \infty} \mu(A_n).$$

Proof. 1). If for some n_0 $\mu(A_{n_0}) = +\infty$ then $\mu(A_n) = +\infty \ \forall n \geq n_0$ and $\mu\left(\bigcup_{i=1}^{\infty} A_i\right) = +\infty$.

2). Let now $\mu(A_i) < \infty \ \forall i \geq 1$.

Then
\[
\mu(\bigcup_{i=1}^{\infty} A_i) = \mu(A_1 \cup (A_2 \setminus A_1) \cup \ldots \cup (A_n \setminus A_{n-1}) \cup \ldots)
\]
\[= \mu(A_1) + \sum_{k=2}^{\infty} \mu(A_k \setminus A_{k-1})
\]
\[= \mu(A_1) + \lim_{n \to \infty} \sum_{k=2}^{n} (\mu(A_k) - \mu(A_{k-1})) = \lim_{n \to \infty} \mu(A_n).
\]

3.2 Outer measure

Let \(\mathcal{A} \) be an algebra of subsets of \(X \) and \(\mu \) a measure on it. Our purpose now is to extend \(\mu \) to as many elements of \(2^X \) as possible.

An arbitrary set \(A \subset X \) can be always covered by sets from \(\mathcal{A} \), i.e. one can always find \(E_1, E_2, \ldots \in \mathcal{A} \) such that \(\bigcup_{i=1}^{\infty} E_i \supset A \). For instance, \(E_1 = X, E_2 = E_3 = \ldots = \emptyset \).

Definition 3.2 For \(A \subset X \) its outer measure is defined by
\[
\mu^*(A) = \inf \sum_{i=1}^{\infty} \mu(E_i)
\]
where the infimum is taken over all \(\mathcal{A} \)-coverings of the set \(A \), i.e. all collections \((E_i), \ E_i \in \mathcal{A} \) with \(\bigcup_i E_i \supset A \).

Remark. The outer measure always exists since \(\mu(A) \geq 0 \) for every \(A \in \mathcal{A} \).

Example. Let \(X = \mathbb{R}^2 \), \(\mathcal{A} = \mathcal{B}(\mathbb{R}) \), -\(\sigma \)-algebra generated by \(\mathbb{P} \), \(\mathbb{P} = \{[a, b) \times \mathbb{R}^1\} \). Thus \(\mathcal{A} \) consists of countable unions of strips like one drawn on the picture. Put \(\mu([a, b) \times \mathbb{R}^1) = b - a \). Then, clearly, the outer measure of the unit disc \(x^2 + y^2 \leq 1 \) is equal to 2. The same value is for the square \(|x| \leq 1, \ |y| \leq 1 \).

Theorem 3.2 For \(A \in \mathcal{A} \) one has \(\mu^*(A) = \mu(A) \).

In other words, \(\mu^* \) is an extension of \(\mu \).

Proof. 1. \(A \) is its own covering. This implies \(\mu^*(A) \leq \mu(A) \).

2. By definition of infimum, for any \(\varepsilon > 0 \) there exists a \(\mathcal{A} \)-covering \((E_i) \) of \(A \) such that \(\sum_i \mu(E_i) < \mu^*(A) + \varepsilon \). Note that
\[
A = A \cap (\bigcup_i E_i) = \bigcup_i (A \cap E_i).
\]
Using consequently σ-semiadditivity and monotonicity of μ, one obtains:

$$\mu(A) \leq \sum_i \mu(A \cap E_i) \leq \sum_i \mu(E_i) < \mu^*(A) + \varepsilon.$$

Since ε is arbitrary, we conclude that $\mu(A) \leq \mu^*(A)$. $lacksquare$

It is evident that $\mu^*(A) \geq 0$, $\mu^*(\emptyset) = 0$ (Check!).

Lemma. Let \mathcal{A} be an algebra of sets (not necessary σ-algebra), μ a measure on \mathcal{A}. If there exists a set $A \in \mathcal{A}$ such that $\mu(A) < \infty$, then $\mu(\emptyset) = 0$.

Proof. $\mu(A \setminus A) = \mu(A) - \mu(A) = 0$. $lacksquare$

Therefore the property $\mu(\emptyset) = 0$ can be substituted with the existence in \mathcal{A} of a set with a finite measure.

Theorem 3.3 (*Monotonicity of outer measure*). If $A \subset B$ then $\mu^*(A) \leq \mu^*(B)$.

Proof. Any covering of B is a covering of A. $lacksquare$

Theorem 3.4 (*σ-semiadditivity of μ^**). $\mu^*(\bigcup_{j=1}^{\infty} A_j) \leq \sum_{j=1}^{\infty} \mu^*(A_j)$.

8
Proof. If the series in the right-hand side diverges, there is nothing to prove. So assume that it is convergent.

By the definition of outer measur for any $\varepsilon > 0$ and for any j there exists an A-covering $\bigcup E_{kj} \supset A_j$ such that

$$\sum_{k=1}^{\infty} \mu(E_{kj}) < \mu^*(A_j) + \frac{\varepsilon}{2^j}.$$

Since

$$\bigcup_{j,k=1}^{\infty} E_{kj} \supset \bigcup_{j=1}^{\infty} A_j,$$

the definition of μ^* implies

$$\mu^*(\bigcup_{j=1}^{\infty} A_j) \leq \sum_{j,k=1}^{\infty} \mu(E_{kj})$$

and therefore

$$\mu^*(\bigcup_{j=1}^{\infty} A_j) < \sum_{j=1}^{\infty} \mu^*(A_j) + \varepsilon.$$

$$\blacksquare$$

3.3 Measurable Sets

Let \mathcal{A} be an algebra of subsets of X, μ a measure on it, μ^* the outer measure defined in the previous section.

Definition 3.3 A $\subset X$ is called a measurable set (by Carathéodory) if for any $E \subset X$ the following relation holds:

$$\mu^*(E) = \mu^*(E \cap A) + \mu^*(E \cap A^c).$$

Denote by $\tilde{\mathcal{A}}$ the collection of all set which are measurable by Carathéodory and set $\tilde{\mu} = \mu^* \upharpoonright \tilde{\mathcal{A}}$.

Remark Since $E = (E \cap A) \cup (E \cap A^c)$, due to semiadditivity of the outer measure

$$\mu^*(E) \leq \mu^*(E \cap A) + \mu^*(E \cap A^c).$$

Theorem 3.5 $\tilde{\mathcal{A}}$ is a σ-algebra containing \mathcal{A}, and $\tilde{\mu}$ is a measure on $\tilde{\mathcal{A}}$. 9
Proof. We divide the proof into several steps.

1. **If** $A, B \in \tilde{\mathfrak{A}}$ **then** $A \cup B \in \tilde{\mathfrak{A}}$.

 By the definition one has
 \[
 \mu^*(E) = \mu^*(E \cap B) + \mu^*(E \cap B^c). \tag{1}
 \]

 Take $E \cap A$ instead of E:
 \[
 \mu^*(E \cap A) = \mu^*(E \cap A \cap B) + \mu^*(E \cap A \cap B^c). \tag{2}
 \]

 Then put $E \cap A^c$ in (1) instead of E:
 \[
 \mu^*(E \cap A^c) = \mu^*(E \cap A^c \cap B) + \mu^*(E \cap A^c \cap B^c). \tag{3}
 \]

 Add (2) and (3):
 \[
 \mu^*(E) = \mu^*(E \cap A \cap B) + \mu^*(E \cap A \cap B^c) + \mu^*(E \cap A^c \cap B) + \mu^*(E \cap A^c \cap B^c). \tag{4}
 \]

 Substitute $E \cap (A \cup B)$ in (4) instead of E. Note that
 \[
 1) \quad E \cap (A \cup B) \cap A \cap B = E \cap A \cap B \\
 2) \quad E \cap (A \cup B) \cap A^c \cap B = E \cap A^c \cap B \\
 3) \quad E \cap (A \cup B) \cap A \cap B^c = E \cap A \cap B^c \\
 4) \quad E \cap (A \cup B) \cap A^c \cap B^c = \emptyset.
 \]

 One has
 \[
 \mu^*(E \cap (A \cup B)) = \mu^*(E \cap A \cap B) + \mu^*(E \cap A^c \cap B) + \mu^*(E \cap A \cap B^c). \tag{5}
 \]

 From (4) and (5) we have
 \[
 \mu^*(E) = \mu^*(E \cap (A \cup B)) + \mu^*(E \cap (A \cup B)^c).
 \]

2. **If** $A \in \tilde{\mathfrak{A}}$ **then** $A^c \in \tilde{\mathfrak{A}}$.

 The definition of measurable set is symmetric with respect to A and A^c.

 Therefore $\tilde{\mathfrak{A}}$ is an algebra of sets.

3. Let $A, B \in \mathfrak{A}$, $A \cap B = \emptyset$. From (5)
 \[
 \mu^*(E \cap (A \cup B)) = \mu^*(E \cap A^c \cap B) + \mu^*(E \cap A \cap B^c) = \mu^*(E \cap B) + \mu^*(E \cap A).
 \]
4. $\tilde{\mathcal{A}}$ is a σ-algebra.

From the previous step, by induction, for any finite disjoint collection (B_j) of sets:

$$\mu^*(E \cap (\bigcup_{j=1}^{n} B_j)) = \sum_{j=1}^{n} \mu^*(E \cap B_j). \quad (6)$$

Let $A = \bigcup_{j=1}^{\infty} A_j, A_j \in \mathcal{A}$. Then $A = \bigcup_{j=1}^{\infty} B_j, B_j = A_j \setminus \bigcup_{k=1}^{j-1} A_k$ and

$B_i \cap B_j = \emptyset$ ($i \neq j$). It suffices to prove that

$$\mu^*(E) \geq \mu^*(E \cap (\bigcup_{j=1}^{\infty} B_j)) + \mu^*(E \cap (\bigcup_{j=1}^{\infty} B_j)^c). \quad (7)$$

Indeed, we have already proved that μ^* is σ-semi-additive.

Since $\tilde{\mathcal{A}}$ is an algebra, it follows that $\bigcup_{j=1}^{n} B_j \in \tilde{\mathcal{A}} (\forall n \in \mathbb{N})$ and the following inequality holds for every n:

$$\mu^*(E) \geq \mu^*(E \cap (\bigcup_{j=1}^{n} B_j)) + \mu^*(E \cap (\bigcup_{j=1}^{n} B_j)^c). \quad (8)$$

Since $E \cap (\bigcup_{j=1}^{\infty} B_j)^c \subset E \cap (\bigcup_{j=1}^{n} B_j)^c$, by monotonicity of the measure and (8),

$$\mu^*(E) \geq \sum_{j=1}^{n} \mu^*(E \cap B_j) + \mu^*(E \cap A^c). \quad (9)$$

Passing to the limit we get

$$\mu^*(E) \geq \sum_{j=1}^{\infty} \mu^*(E \cap B_j) + \mu^*(E \cap A^c). \quad (10)$$

Due to semiaadditivity

$$\mu^*(E \cap A) = \mu^*(E \cap (\bigcup_{j=1}^{\infty} B_j)) = \mu^*(\bigcup_{j=1}^{\infty}(E \cap B_j)) \leq \sum_{j=1}^{\infty} \mu^*(E \cap B_j).$$

Compare this with (10):

$$\mu^*(E) \geq \mu^*(E \cap A) + \mu^*(E \cap A^c).$$

Thus, $A \in \tilde{\mathcal{A}}$, which means that $\tilde{\mathcal{A}}$ is a σ-algebra.

5. $\hat{\mu} = \mu^* | \tilde{\mathcal{A}}$ is a measure.
We need to prove only σ-additivity. Let $E = \bigcup_{j=1}^{\infty} A_j$. From (10) we get

$$\mu^*(\bigcup_{j=1}^{\infty} A_j) \geq \sum_{j=1}^{\infty} \mu^*(A_j).$$

The opposite inequality follows from σ-semiadditivity of μ^*.

6. $\mathfrak{A} \supseteq \mathfrak{A}$.

Let $A \in \mathfrak{A}$, $E \subset X$. We need to prove:

$$\mu^*(E) \geq \mu^*(E \cap A) + \mu^*(E \cap A^c). \quad (11)$$

If $E \in \mathfrak{A}$ then (11) is clear since $E \cap A$ and $E \cap A^c$ are disjoint and both belong to \mathfrak{A} where $\mu^* = \mu$ and so is additive.

For $E \subset X$ for $\forall \varepsilon > 0$ there exists a \mathfrak{A}-covering (E_j) of E such that

$$\mu^*(E) + \varepsilon > \sum_{j=1}^{\infty} \mu(E_j). \quad (12)$$

Now, since $E_j = (E_j \cap A) \cup (E_j \cap A^c)$, one has

$$\mu(E_j) = \mu(E_j \cap A) + \mu(E_j \cap A^c)$$

and also

$$E \cap A \subset \bigcup_{j=1}^{\infty} (E_j \cap A)$$

$$E \cap A^c \subset \bigcup_{j=1}^{\infty} (E_j \cap A^c)$$

By monotonicity and σ-semiadditivity

$$\mu^*(E \cap A) \leq \sum_{j=1}^{\infty} \mu(E_j \cap A),$$

$$\mu^*(E \cap A^c) \leq \sum_{j=1}^{\infty} \mu(E_j \cap A^c).$$

Adding the last two inequalities we obtain

$$\mu^*(E \cap A) + \mu^*(E \cap A^c) \leq \sum_{j=1}^{\infty} \mu^*(E_j) < \mu^*(E) + \varepsilon.$$

Since $\varepsilon > 0$ is arbitrary, (11) is proved.

The following theorem is a direct consequence of the previous one.
Theorem 3.6 Let \mathfrak{A} be an algebra of subsets of X and μ be a measure on it. Then there exists a σ-algebra $\mathfrak{A}_1 \supset \mathfrak{A}$ and a measure μ_1 on \mathfrak{A}_1 such that $\mu_1 \upharpoonright \mathfrak{A} = \mu$.

Remark. Consider again an algebra \mathfrak{A} of subsets of X. Denote by \mathfrak{A}_σ the generated σ-algebra and construct the extension μ_σ of μ on \mathfrak{A}_σ. This extension is called minimal extension of measure.

Since $\tilde{\mathfrak{A}} \supset \mathfrak{A}$ therefore $\mathfrak{A}_\sigma \subset \tilde{\mathfrak{A}}$. Hence one can set $\mu_\sigma = \tilde{\mu} \upharpoonright \mathfrak{A}_\sigma$. Obviously μ_σ is a minimal extension of μ. It always exists. On can also show (see below) that this extension is unique.

Theorem 3.7 Let μ be a measure on an algebra \mathfrak{A} of subsets of X, μ^* the corresponding outer measure. If $\mu^*(A) = 0$ for a set $A \subset X$ then $A \in \tilde{\mathfrak{A}}$ and $\tilde{\mu}(A) = 0$.

Proof. Clearly, it suffices to prove that $A \in \tilde{\mathfrak{A}}$. Further, it suffices to prove that $\mu^*(E) \geq \mu^*(E \cap A) + \mu^*(E \cap A^c)$. The latter statement follows from monotonicity of μ^*. Indeed, one has $\mu^*(E \cap A) \leq \mu^*(A) = 0$ and $\mu^*(E \cap A^c) \leq \mu^*(E)$. ■

Definition 3.4 A measure μ on an algebra of sets \mathfrak{A} is called complete if conditions $B \subset A, A \in \mathfrak{A}, \mu(A) = 0$ imply $B \in \mathfrak{A}$ and $\mu(B) = 0$.

Corollary. $\tilde{\mu}$ is a complete measure.

Definition 3.5 A measure μ on an algebra \mathfrak{A} is called finite if $\mu(X) < \infty$. It is called σ-finite if there is an increasing sequence $(F_j)_{j \geq 1} \subset \mathfrak{A}$ such that $X = \bigcup_j F_j$ and $\mu(F_j) < \infty$ $\forall j$.

Theorem 3.8 Let μ be a σ-finite measure on an algebra \mathfrak{A}. Then there exist a unique extension of μ to a measure on $\tilde{\mathfrak{A}}$.

Proof. It suffices to show uniqueness. Let ν be another extension of μ ($\nu \upharpoonright \mathfrak{A} = \mu \upharpoonright \mathfrak{A}$).

First, let μ (and therefore ν, μ^*) be finite. Let $A \in \tilde{\mathfrak{A}}$. Let $(E_j) \subset \mathfrak{A}$ such that $A \subset \bigcup_j E_j$. We have

$$\nu(A) \leq \nu(\bigcup_{j=1}^{\infty} E_j) = \sum_{j=1}^{\infty} \nu(E_j) = \sum_{j=1}^{\infty} \mu(E_j).$$

Therefore

$$\nu(A) \leq \mu^*(A) \quad \forall A \in \tilde{\mathfrak{A}}.$$
Since μ^* and ν are additive (on $\tilde{\mathfrak{A}}$) it follows that

$$\mu^*(A) + \mu^*(A^c) = \nu(A) + \nu(A^c).$$

The terms in the RHS are finite and $\nu(A) \leq \mu^*(A)$, $\nu(A^c) \leq \mu^*(A^c)$. From this we infer that

$$\nu(A) = \mu^*(A) \ \forall A \in \tilde{\mathfrak{A}}.$$

Now let μ be σ-finite, (F_j) be an increasing sequence of sets from \mathfrak{A} such that $\mu(F_j) < \infty \ \forall j$ and $X = \bigcup_{j=1}^{\infty} F_j$. From what we have already proved it follows that

$$\mu^*(A \cap F_j) = \nu(A \cap F_j) \ \forall A \in \tilde{\mathfrak{A}}.$$

Therefore

$$\mu^*(A) = \lim_{j \to \infty} \mu^*(A \cap F_j) = \lim_{j \to \infty} \nu(A \cap F_j) = \nu(A). \ \Box$$

Theorem 3.9 (Continuity of measure). Let \mathfrak{A} be a σ-algebra with a measure μ, $\{A_j\} \subset \mathfrak{A}$ a monotonically increasing sequence of sets. Then

$$\mu(\bigcup_{j=1}^{\infty} A_j) = \lim_{j \to \infty} \mu(A_j).$$

Proof. One has:

$$A = \bigcup_{j=1}^{\infty} A_j = \bigcup_{j=2}^{\infty} (A_{j+1} \setminus A_j) \cup A_1.$$

Using σ-additivity and subtractivity of μ,

$$\mu(A) = \sum_{j=1}^{\infty} (\mu(A_{j+1}) - \mu(A_j)) + \mu(A_1) = \lim_{j \to \infty} \mu(A_j). \ \Box$$

Similar assertions for a decreasing sequence of sets in \mathfrak{A} can be proved using de Morgan formulas.

Theorem 3.10 Let $A \in \tilde{\mathfrak{A}}$. Then for any $\varepsilon > 0$ there exists $A_\varepsilon \in \mathfrak{A}$ such that $\mu^*(A \Delta A_\varepsilon) < \varepsilon$.

Proof. 1. For any $\varepsilon > 0$ there exists an \mathfrak{A} cover $\bigcup E_j \supset A$ such that

$$\sum_j \mu(E_j) < \mu^*(A) + \frac{\varepsilon}{2} = \tilde{\mu}(A) + \frac{\varepsilon}{2}.$$
On the other hand,

$$\sum_{j} \mu(E_j) \geq \tilde{\mu}(\bigcup_{j} E_j).$$

The monotonicity of $\tilde{\mu}$ implies

$$\tilde{\mu}(\bigcup_{j=1}^{\infty} E_j) = \lim_{n \to \infty} \tilde{\mu}(\bigcup_{j=1}^{n} E_j),$$

hence there exists a positive integer N such that

$$\tilde{\mu}(\bigcup_{j=1}^{\infty} E_j) - \tilde{\mu}(\bigcup_{j=1}^{N} E_j) < \frac{\varepsilon}{2}.$$ \hspace{1cm} (13)

2. Now, put

$$A_{\varepsilon} = \bigcup_{j=1}^{N} E_j$$

and prove that $\mu^*(A \Delta A_{\varepsilon}) < \varepsilon$.

2a. Since

$$A \subset \bigcup_{j=1}^{\infty} E_j,$$

one has

$$A \setminus A_{\varepsilon} \subset \bigcup_{j=1}^{\infty} E_j \setminus A_{\varepsilon}.$$

Since

$$A_{\varepsilon} \subset \bigcup_{j=1}^{\infty} E_j,$$

one can use the monotonicity and subtractivity of $\tilde{\mu}$. Together with estimate (13), this gives

$$\tilde{\mu}(A \setminus A_{\varepsilon}) \leq \tilde{\mu}(\bigcup_{j=1}^{\infty} E_j \setminus A_{\varepsilon}) < \frac{\varepsilon}{2}.$$

2b. The inclusion

$$A_{\varepsilon} \setminus A \subset \bigcup_{j=1}^{\infty} E_j \setminus A$$

implies

$$\tilde{\mu}(A_{\varepsilon} \setminus A) \leq \tilde{\mu}(\bigcup_{j=1}^{\infty} E_j \setminus A) = \tilde{\mu}(\bigcup_{j=1}^{\infty} E_j) - \tilde{\mu}(A) < \frac{\varepsilon}{2}.$$
Here we used the same properties of $\tilde{\mu}$ as above and the choice of the cover (E_j).

3. Finally,

$$\tilde{\mu}(A \triangle A_\varepsilon) \leq \tilde{\mu}(A \setminus A_\varepsilon) + \tilde{\mu}(A_\varepsilon \setminus A).$$

■
4 Monotone Classes
and Uniqueness of Extension of Measure

Definition 4.1 A collection of sets, \(\mathcal{M} \) is called a monotone class if together with any monotone sequence of sets \(\mathcal{M} \) contains the limit of this sequence.

Example. Any \(\sigma \)-ring. (This follows from the Exercise 1. below).

Exercises.

1. Prove that any \(\sigma \)-ring is a monotone class.
2. If a ring is a monotone class, then it is a \(\sigma \)-ring.

We shall denote by \(\mathcal{M}(\mathcal{K}) \) the minimal monotone class containing \(\mathcal{K} \).

Theorem 4.1 Let \(\mathcal{K} \) be a ring of sets, \(\mathcal{K}_\sigma \) the \(\sigma \)-ring generated by \(\mathcal{K} \). Then \(\mathcal{M}(\mathcal{K}) = \mathcal{K}_\sigma \).

Proof. 1. Clearly, \(\mathcal{M}(\mathcal{K}) \subset \mathcal{K}_\sigma \). Now, it suffices to prove that \(\mathcal{M}(\mathcal{K}) \) is a ring. This follows from the Exercise (2) above and from the minimality of \(\mathcal{K}_\sigma \).

2. \(\mathcal{M}(\mathcal{K}) \) is a ring.

2a. For \(B \subset X \), set

\[
\mathcal{K}_B = \{ A \subset X : A \cup B, A \cap B, A \setminus B, B \setminus A \in \mathcal{M}(\mathcal{K}) \}.
\]

This definition is symmetric with respect to \(A \) and \(B \), therefore \(A \in \mathcal{K}_B \) implies \(B \in \mathcal{K}_A \).

2b. \(\mathcal{K}_B \) is a monotone class.

Let \((A_j) \subset \mathcal{K}_B \) be a monotonically increasing sequence. Prove that the union, \(A = \bigcup A_j \) belongs to \(\mathcal{K}_B \).

Since \(A_j \in \mathcal{K}_B \), one has \(A_j \cup B \in \mathcal{K}_B \), and so

\[
A \cup B = \bigcup_{j=1}^{\infty} (A_j \cup B) \in \mathcal{M}(\mathcal{K}).
\]

In the same way,

\[
A \setminus B = (\bigcup_{j=1}^{\infty} A_j) \setminus B = \bigcup_{j=1}^{\infty} (A_j \setminus B) \in \mathcal{M}(\mathcal{K});
\]
\[B \setminus A = B \setminus \left(\bigcup_{j=1}^{\infty} A_j \right) = \bigcap_{j=1}^{\infty} (B \setminus A_j) \in \mathcal{M}(\mathcal{K}). \]

Similar proof is for the case of decreasing sequence \((A_j)\).

2c. If \(B \in \mathcal{K}\) then \(\mathcal{M}(\mathcal{K}) \subset \mathcal{K}_B\).

Obviously, \(\mathcal{K} \subset \mathcal{K}_B\). Together with minimality of \(\mathcal{M}(\mathcal{K})\), this implies \(\mathcal{M}(\mathcal{K}) \subset \mathcal{K}_B\).

2d. If \(B \in \mathcal{M}(\mathcal{K})\) then \(\mathcal{M}(\mathcal{K}) \subset \mathcal{K}_B\).

Let \(A \in \mathcal{K}\). Then \(\mathcal{M}(\mathcal{K}) \subset \mathcal{K}_A\). Thus if \(B \in \mathcal{M}(\mathcal{K})\), one has \(B \in \mathcal{K}_A\), so \(A \in \mathcal{K}_B\).

Hence what we have proved is \(\mathcal{K} \subset \mathcal{K}_B\). This implies \(\mathcal{M}(\mathcal{K}) \subset \mathcal{K}_B\).

2e. It follows from 2a. — 2d. that if \(A, B \in \mathcal{M}(\mathcal{K})\) then \(A \in \mathcal{K}_B\) and so \(A \cup B, A \cap B, A \setminus B\) and \(B \setminus A\) all belong to \(\mathcal{M}(\mathcal{K})\). ■

Theorem 4.2 Let \(\mathcal{A}\) be an algebra of sets, \(\mu\) and \(\nu\) two measures defined on the \(\sigma\)-algebra \(\mathcal{A}_\sigma\) generated by \(\mathcal{A}\). Then \(\mu \upharpoonright \mathcal{A} = \nu \upharpoonright \mathcal{A}\) implies \(\mu = \nu\).

Proof. Choose \(A \in \mathcal{A}_\sigma\), then \(A = \lim_{n \to \infty} A_n\), \(A_n \in \mathcal{A}\), for \(\mathcal{A}_\sigma = \mathcal{M}(\mathcal{A})\). Using continuity of measure, one has

\[\mu(A) = \lim_{n \to \infty} \mu(A_n) = \lim_{n \to \infty} \nu(A_n) = \nu(A). \]

■

Theorem 4.3 Let \(\mathcal{A}\) be an algebra of sets, \(B \subset X\) such that for any \(\varepsilon > 0\) there exists \(A_\varepsilon \in \mathcal{A}\) with \(\mu_*(B \Delta A_\varepsilon) < \varepsilon\). Then \(B \in \mathcal{A}\).

Proof. 1. Since any outer measure is semi-additive, it suffices to prove that for any \(E \subset X\) one has

\[\mu_*(E) \geq \mu_*(E \cap B) + \mu_*(E \cap B^c). \]

2a. Since \(\mathcal{A} \subset \mathcal{A}\), one has

\[\mu_*(E \cap A_\varepsilon) + \mu_*(E \cap A_\varepsilon^c) \leq \mu_*(E). \] (14)

2b. Since \(A \subset B \cup (A \Delta B)\) and since the outer measure \(\mu_*\) is monotone and semi-additive, there is an estimate \(|\mu_*(A) - \mu_*(B)| \leq \mu_*(A \Delta B)\) for any \(A, B \subset X\). (C.f. the proof of similar fact for measures above).

2c. It follows from the monotonicity of \(\mu_*\) that

\[|\mu_*(E \cap A_\varepsilon) - \mu_*(E \cap B)| \leq \mu_*((E \cap A_\varepsilon) \Delta (E \cap B)) \leq \mu(A_\varepsilon \cap B) < \varepsilon. \]
Therefore, \(\mu^*(E \cap A_\varepsilon) > \mu^*(E \cap B) - \varepsilon \).

In the same manner, \(\mu^*(E \cap A_\varepsilon^c) > \mu^*(E \cap B^c) - \varepsilon \).

2d. Using (14), one obtains

\[
\mu^*(E) > \mu^*(E \cap B) + \mu^*(E \cap B^c) - 2\varepsilon.
\]
5 The Lebesgue Measure on the real line \mathbb{R}^1

5.1 The Lebesgue Measure of Bounded Sets of \mathbb{R}^1

Put \mathcal{A} for the algebra of all finite unions of semi-segments (semi-intervals) on \mathbb{R}^1, i.e. all sets of the form

$$A = \bigcup_{j=1}^{k} [a_j, b_j].$$

Define a mapping $\mu : \mathcal{A} \rightarrow \mathbb{R}$ by:

$$\mu(A) = \sum_{j=1}^{k} (b_j - a_j).$$

Theorem 5.1 μ is a measure.

Proof.
1. All properties including the (finite) additivity are obvious. The only thing to be proved is the σ-additivity.

Let $(A_j) \subset \mathcal{A}$ be such a countable disjoint family that

$$A = \bigcup_{j=1}^{\infty} A_j \in \mathcal{A}.$$

The condition $A \in \mathcal{A}$ means that $\bigcup A_j$ is a finite union of intervals.

2. For any positive integer n,

$$\bigcup_{j=1}^{n} A_j \subset A,$$

hence

$$\sum_{j=1}^{n} \mu(A_j) \leq \mu(A),$$

and

$$\sum_{j=1}^{\infty} \mu(A_j) = \lim_{n \to \infty} \sum_{j=1}^{n} \mu(A_j) \leq \mu(A).$$

3. Now, let A^ε a set obtained from A by the following construction. Take a connected component of A. It is a semi-segment of the form $[s, t)$. Shift slightly on the left its right-hand end, to obtain a (closed) segment. Do it with all components of A, in such a way that

$$\mu(A) < \mu(A^\varepsilon) + \varepsilon. \quad (15)$$
Apply a similar procedure to each semi-segment shifting their left end point to the left

\[A_j = [a_j, b_j], \text{ and obtain (open) intervals, } A_j^\varepsilon \text{ with} \]

\[\mu(A_j^\varepsilon) < \mu(A_j) + \frac{\varepsilon}{2^j}. \quad (16) \]

4. By the construction, \(A^\varepsilon \) is a compact set and \((A_j^\varepsilon) \) its open cover. Hence, there exists a positive integer \(n \) such that

\[\bigcup_{j=1}^{n} A_j^\varepsilon \supset A^\varepsilon. \]

Thus

\[\mu(A^\varepsilon) \leq \sum_{j=1}^{n} \mu(A_j^\varepsilon). \]

The formulas (15) and (16) imply

\[\mu(A) < \sum_{j=1}^{n} \mu(A_j^\varepsilon) + \varepsilon \leq \sum_{j=1}^{n} \mu(A_j) + \sum_{j=1}^{n} \frac{\varepsilon}{2^j} + \varepsilon, \]

thus

\[\mu(A) < \sum_{j=1}^{\infty} \mu(A_j) + 2\varepsilon. \]

Now, one can apply the Carathéodory’s scheme developed above, and obtain the measure space \((\mathfrak{A}, \hat{\mu})\). The result of this extension is called the Lebesgue measure. We shall denote the Lebesgue measure on \(\mathbb{R}^1 \) by \(m \).

Exercises.

1. A one point set is measurable, and its Lebesgue measure is equal to 0.
2. The same for a countable subset in \(\mathbb{R}^1 \). In particular, \(m(\mathbb{Q} \cap [0, 1]) = 0 \).
3. Any open or closed set in \(\mathbb{R}^1 \) is Lebesgue measurable.

Definition 5.1 Borel algebra of sets, \(\mathfrak{B} \) on the real line \(\mathbb{R}^1 \) is a \(\sigma \)-algebra generated by all open sets on \(\mathbb{R}^1 \). Any element of \(\mathfrak{B} \) is called a Borel set.

Exercise. Any Borel set is Lebesgue measurable.

Theorem 5.2 Let \(E \subset \mathbb{R}^1 \) be a Lebesgue measurable set. Then for any \(\varepsilon > 0 \) there exists an open set \(G \supset E \) such that \(m(G \setminus E) < \varepsilon \).
Proof. Since E is measurable, $m^*(E) = m(E)$. According the definition of an outer measure, for any $\varepsilon > 0$ there exists a cover $A = \bigcup (a_k, b_k) \supset E$ such that

$$m(A) < m(E) + \frac{\varepsilon}{2}.$$

Now, put

$$G = \bigcup (a_k - \frac{\varepsilon}{2^{k+1}}, b_k).$$

Problem. Let $E \subset \mathbb{R}^1$ be a bounded Lebesgue measurable set. Then for any $\varepsilon > 0$ there exists a compact set $F \subset E$ such that $m(E \setminus F) < \varepsilon$. (Hint: Cover E with a semi-segment and apply the above theorem to the σ-algebra of measurable subsets in this semi-segment).

Corollary. For any $\varepsilon > 0$ there exist an open set G and a compact set F such that $G \supset E \supset F$ and $m(G \setminus F) < \varepsilon$.

Such measures are called regular.

5.2 The Lebesgue Measure on the Real Line \mathbb{R}^1

We now abolish the condition of boundness.

Definition 5.2 A set A on the real numbers line \mathbb{R}^1 is Lebesgue measurable if for any positive integer n the bounded set $A \cap [-n, n)$ is a Lebesgue measurable set.

Definition 5.3 The Lebesgue measure on \mathbb{R}^1 is

$$m(A) = \lim_{n \to \infty} m(A \cap [-n, n)).$$

Definition 5.4 A measure is called σ-finite if any measurable set can be represented as a countable union of subsets each has a finite measure.

Thus the Lebesgue measure m is σ-finite.

Problem. The Lebesgue measure on \mathbb{R}^1 is regular.

5.3 The Lebesgue Measure in \mathbb{R}^d

Definition 5.5 We call a d-dimensional rectangle in \mathbb{R}^d any set of the form

$$\{x : x \in \mathbb{R}^d : a_i \leq x_i < b_i \}.$$
Using rectangles, one can construct the Lebesque measure in \mathbb{R}^d in the same fashion as we did for the \mathbb{R}^1 case.
6 Measurable functions

Let X be a set, \mathcal{A} a σ-algebra on X.

Definition 6.1 A pair (X, \mathcal{A}) is called a measurable space.

Definition 6.2 Let f be a function defined on a measurable space (X, \mathcal{A}), with values in the extended real number system. The function f is called measurable if the set

$$\{ x : f(x) > a \}$$

is measurable for every real a.

Example.

Theorem 6.1 The following conditions are equivalent

1. $\{ x : f(x) > a \}$ is measurable for every real a.
2. $\{ x : f(x) \geq a \}$ is measurable for every real a.
3. $\{ x : f(x) < a \}$ is measurable for every real a.
4. $\{ x : f(x) \leq a \}$ is measurable for every real a.

Proof. The statement follows from the equalities

$$\{ x : f(x) \geq a \} = \bigcap_{n=1}^{\infty} \{ x : f(x) > a - \frac{1}{n} \},$$
$$\{ x : f(x) < a \} = X \setminus \{ x : f(x) \geq a \},$$
$$\{ x : f(x) \leq a \} = \bigcap_{n=1}^{\infty} \{ x : f(x) < a + \frac{1}{n} \},$$
$$\{ x : f(x) > a \} = X \setminus \{ x : f(x) \leq a \}$$

Theorem 6.2 Let (f_n) be a sequence of measurable functions. For $x \in X$ set

$$g(x) = \sup_{n} f_n(x) (n \in \mathbb{N})$$
$$h(x) = \limsup_{n \to \infty} f_n(x).$$

Then g and h are measurable.
Proof.

\[\{ x : g(x) \leq a \} = \bigcap_{n=1}^{\infty} \{ x : f_n(x) \leq a \}. \]

Since the LHS is measurable it follows that the RHS is measurable too. The same proof works for inf.

Now

\[h(x) = \inf g_m(x), \]

where

\[g_m(x) = \sup_{n \geq m} f_n(x). \]

Theorem 6.3 Let \(f \) and \(g \) be measurable real-valued functions defined on \(X \). Let \(F \) be real and continuous function on \(\mathbb{R}^2 \). Put

\[h(x) = F(f(x), g(x)) \quad (x \in X). \]

Then \(h \) is measurable.

Proof. Let \(G_a = \{ (u, v) : F(u, v) > a \} \). Then \(G_a \) is an open subset of \(\mathbb{R}^2 \), and thus

\[G_a = \bigcup_{n=1}^{\infty} I_n \]

where \((I_n) \) is a sequence of open intervals

\[I_n = \{ (u, v) : a_n < u < b_n, c_n < v < d_n \}. \]

The set \(\{ x : a_n < f(x) < b_n \} \) is measurable and so is the set

\[\{ x : (f(x), g(x)) \in I_n \} = \{ x : a_n < f(x) < b_n \} \cap \{ x : c_n < g(x) < d_n \}. \]

Hence the same is true for

\[\{ x : h(x) > a \} = \{ x : (f(x), g(x)) \in G_a \} = \bigcup_{n=1}^{\infty} \{ x : (f(x), g(x)) \in I_n \}. \]

Corollories. Let \(f \) and \(g \) be measurable. Then the following functions are measurable

\[
\begin{align*}
(i) & \quad f + g \\
(ii) & \quad f \cdot g \\
(iii) & \quad |f| \\
(iv) & \quad \frac{f}{g} \quad (\text{if } g \neq 0) \\
(v) & \quad \max\{f, g\}, \min\{f, g\}
\end{align*}
\]

since \(\max\{f, g\} = 1/2(f + g + |f - g|), \min\{f, g\} = 1/2(f + g - |f - g|) \).
6.1 Step functions (simple functions)

Definition 6.3 A real valued function $f : X \to \mathbb{R}$ is called simple function if it takes only a finite number of distinct values.

We will use below the following notation

$$\chi_E(x) = \begin{cases} 1 & \text{if } x \in E \\ 0 & \text{otherwise} \end{cases}$$

Theorem 6.4 A simple function $f = \sum_{j=1}^{n} c_j \chi_{E_j}$ is measurable if and only if all the sets E_j are measurable.

Exercise. Prove the theorem.

Theorem 6.5 Let f be real valued. There exists a sequence (f_n) of simple functions such that $f_n(x) \longrightarrow f(x)$ as $n \to \infty$, for every $x \in X$. If f is measurable, (f_n) may be chosen to be a sequence of measurable functions. If $f \geq 0$, (f_n) may be chosen monotonically increasing.

Proof. If $f \geq 0$ set

$$f_n(x) = \sum_{i=1}^{n} 2^{-i} \chi_{E_{ni}} + n \chi_{E_n}$$

where

$$E_{ni} = \{x : \frac{i-1}{2^n} \leq f(x) < \frac{i}{2^n}\}, \quad F_n = \{x : f(x) \geq n\}.$$

The sequence (f_n) is monotonically increasing, f_n is a simple function. If $f(x) < \infty$ then $f(x) < n$ for a sufficiently large n and $|f_n(x) - f(x)| < 1/2^n$. Therefore $f_n(x) \longrightarrow f(x)$. If $f(x) = +\infty$ then $f_n(x) = n$ and again $f_n(x) \longrightarrow f(x)$.

In the general case $f = f^+ - f^-$, where

$$f^+(x) := \max\{f(x), 0\}, \quad f^-(x) := -\min\{f(x), 0\}.$$

Note that if f is bounded then $f_n \longrightarrow f$ uniformly.
7 Integration

Definition 7.1 A triple \((X, \mathcal{A}, \mu)\), where \(\mathcal{A}\) is a \(\sigma\)-algebra of subsets of \(X\) and \(\mu\) is a measure on it, is called a measure space.

Let \((X, \mathcal{A}, \mu)\) be a measure space. Let \(f : X \mapsto \mathbb{R}\) be a simple measurable function.

\[
f(x) = \sum_{i=1}^{n} c_i \chi_{E_i}(x) \tag{31}
\]

and

\[
\bigcup_{i=1}^{n} E_i = X, \ E_i \cap E_j = \emptyset \ (i \neq j).
\]

There are different representations of \(f\) by means of (31). Let us choose the representation such that all \(c_i\) are distinct.

Definition 7.2 Define the quantity

\[
I(f) = \sum_{i=1}^{n} c_i \mu(E_i).
\]

First, we derive some properties of \(I(f)\).

Theorem 7.1 Let \(f\) be a simple measurable function. If \(X = \bigcup_{j=1}^{k} F_j\) and \(f\) takes the constant value \(b_j\) on \(F_j\) then

\[
I(f) = \sum_{j=1}^{k} b_j \mu(F_j).
\]

Proof. Clearly, \(E_i = \bigcup_{j: b_j = c_i} F_j\).

\[
\sum_{i} c_i \mu(E_i) = \sum_{i=1}^{n} c_i \mu(\bigcup_{j: b_j = c_i} F_j) = \sum_{i=1}^{n} c_i \sum_{j: b_j = c_i} \mu(F_j) = \sum_{j=1}^{k} b_j \mu(F_j).
\]

This show that the quantity \(I(f)\) is well defined.
Theorem 7.2 If f and g are measurable simple functions then

$$I(\alpha f + \beta g) = \alpha I(f) + \beta I(g).$$

Proof. Let $f(x) = \sum_{j=1}^{n} b_j \chi_{F_j}(x)$, $X = \bigcup_{j=1}^{n} F_j$, $g(x) = \sum_{k=1}^{m} c_k \chi_{G_k}(x)$, $X = \bigcup_{k=1}^{n} G_k$.

Then

$$\alpha f + \beta g = \sum_{j=1}^{n} \sum_{k=1}^{m} (\alpha b_j + \beta c_k) \chi_{E_{jk}}(x)$$

where $E_{jk} = F_j \cap G_k$.

Exercise. Complete the proof.

Theorem 7.3 Let f and g be simple measurable functions. Suppose that $f \leq g$ everywhere except for a set of measure zero. Then

$$I(f) \leq I(g).$$

Proof. If $f \leq g$ everywhere then in the notation of the previous proof $b_j \leq c_k$ on E_{jk} and $I(f) \leq I(g)$ follows.

Otherwise we can assume that $f \leq g + \phi$ where ϕ is non-negative measurable simple function which is zero every except for a set N of measure zero. Then $I(\phi) = 0$ and

$$I(f) \leq I(g + \phi) = I(f) + I(\phi) = I(g).$$

Definition 7.3 If $f : X \mapsto \mathbb{R}$ is a non-negative measurable function, we define the Lebesgue integral of f by

$$\int f d\mu := \sup I(\phi)$$

where \sup is taken over the set of all simple functions ϕ such that $\phi \leq f$.

Theorem 7.4 If f is a simple measurable function then $\int f d\mu = I(f)$.

Proof. Since $f \leq f$ it follows that $\int f d\mu \geq I(f)$.

On the other hand, if $\phi \leq f$ then $I(\phi) \leq I(f)$ and also

$$\sup_{\phi \leq f} I(\phi) \leq I(f)$$

which leads to the inequality

$$\int f d\mu \leq I(f).$$
Definition 7.4 1. If A is a measurable subset of $X \ (A \in \mathfrak{A})$ and f is a non-negative measurable function then we define

$$\int_A f \, d\mu = \int f \chi_A \, d\mu.$$

2.

$$\int f \, d\mu = \int f^+ \, d\mu - \int f^- \, d\mu$$

if at least one of the terms in RHS is finite. If both are finite we call f integrable.

Remark. Finiteness of the integrals $\int f^+ \, d\mu$ and $\int f^- \, d\mu$ is equivalent to the finiteness of the integral $\int |f| \, d\mu$.

If it is the case we write $f \in L^1(X, \mu)$ or simply $f \in L^1$ if there is no ambiguity.

The following properties of the Lebesgue integral are simple consequences of the definition. The proofs are left to the reader.

- If f is measurable and bounded on A and $\mu(A) < \infty$ then f is integrable on A.
- If $a \leq f(x) \leq b \ (x \in A)$, $\mu(A) < \infty$ then

$$a \mu(A) \leq \int_A f \, d\mu \leq b \mu(A).$$

- If $f(x) \leq g(x)$ for all $x \in A$ then

$$\int_A f \, d\mu \leq \int_A g \, d\mu.$$

- Prove that if $\mu(A) = 0$ and f is measurable then

$$\int_A f \, d\mu = 0.$$

The next theorem expresses an important property of the Lebesgue integral. As a consequence we obtain convergence theorems which give the main advantage of the Lebesgue approach to integration in comparison with Riemann integration.
Theorem 7.5 Let f be measurable on X. For $A \in \mathcal{A}$ define

$$\phi(A) = \int_A f \, d\mu.$$

Then ϕ is countably additive on \mathcal{A}.

Proof. It is enough to consider the case $f \geq 0$. The general case follows from the decomposition $f = f^+ - f^-$. If $f = \chi_E$ for some $E \in \mathcal{A}$ then

$$\mu(A \cap E) = \int_A \chi_E \, d\mu,$$

and σ-additivity of ϕ is the same as this property of μ.

Let $f(x) = \sum_{k=1}^n c_k \chi_{E_k}(x), \ \bigcup_{k=1}^n E_k = X$. Then for $A = \bigcup_{i=1}^\infty A_i, \ A_i \in \mathcal{A}$ we have

$$\phi(A) = \int_A f \, d\mu = \int f \chi_A \, d\mu = \sum_{k=1}^n c_k \mu(E_k \cap A)$$

$$= \sum_{k=1}^n c_k \mu(E_k \cap \bigcup_{i=1}^\infty A_i) = \sum_{k=1}^n c_k \mu\left(\bigcup_{i=1}^\infty (E_k \cap A_i)\right)$$

$$= \sum_{k=1}^n c_k \sum_{i=1}^\infty \mu(E_k \cap A_i) = \sum_{i=1}^\infty \sum_{k=1}^n c_k \mu(E_k \cap A_i)$$

(the series of positive numbers)

$$= \sum_{i=1}^\infty \int_{A_i} f \, d\mu = \sum_{i=1}^\infty \phi(A_i).$$

Now consider general positive f’s. Let φ be a simple measurable function and $\varphi \leq f$. Then

$$\int_A \varphi \, d\mu = \sum_{i=1}^\infty \int_{A_i} \varphi \, d\mu \leq \sum_{i=1}^\infty \phi(A_i).$$

Therefore the same inequality holds for sup, hence

$$\phi(A) \leq \sum_{i=1}^\infty \phi(A_i).$$

Now if for some $i \ \phi(A_i) = +\infty$ then $\phi(A) = +\infty$ since $\phi(A) \geq \phi(A_n)$. So assume that $\phi(A_i) < \infty \forall i$. Given $\varepsilon > 0$ choose a measurable simple function φ such that $\varphi \leq f$ and

$$\int_{A_1} \varphi \, d\mu \geq \int_{A_1} f \, d\mu - \varepsilon, \ \int_{A_2} \varphi \, d\mu \geq \int_{A_2} f - \varepsilon.$$
Hence
\[\phi(A_1 \cup A_2) \geq \int_{A_1 \cup A_2} \varphi d\mu = \int_{A_1} + \int_{A_2} \varphi d\mu \geq \phi(A_1) + \phi(A_2) - 2\varepsilon, \]
so that \(\phi(A_1 \cup A_2) \geq \phi(A_1) + \phi(A_2) \).

By induction
\[\phi\left(\bigcup_{i=1}^{n} A_i \right) \geq \sum_{i=1}^{n} \phi(A_i). \]

Since \(A \supset \bigcup_{i=1}^{n} A_i \) we have that
\[\phi(A) \geq \sum_{i=1}^{n} \phi(A_i). \]

Passing to the limit \(n \to \infty \) in the RHS we obtain
\[\phi(A) \geq \sum_{i=1}^{\infty} \phi(A_i). \]

This completes the proof. \(\blacksquare \)

Corollary. If \(A \in \mathcal{A}, \ B \subset A \) and \(\mu(A \setminus B) = 0 \) then
\[\int_A f d\mu = \int_B f d\mu. \]

Proof.
\[\int_A f d\mu = \int_B f d\mu + \int_{A \setminus B} f d\mu = \int_B f d\mu + 0. \]

\(\blacksquare \)

Definition 7.5 \(f \) and \(g \) are called equivalent \((f \sim g \text{ in writing}) \) if \(\mu\{x : f(x) \neq g(x)\} = 0 \).

It is not hard to see that \(f \sim g \) is relation of equivalence.

(i) \(f \sim f \), (ii) \(f \sim g, \ g \sim h \Rightarrow f \sim h \), (iii) \(f \sim g \Leftrightarrow g \sim f \).

Theorem 7.6 If \(f \in L^1 \) then \(|f| \in L^1 \) and
\[\left| \int_A f d\mu \right| \leq \int_A |f| d\mu \]

31
Proof.

\[-|f| \leq f \leq |f| \]

Theorem 7.7 (Monotone Convergence Theorem)

Let \((f_n)\) be nondecreasing sequence of nonnegative measurable functions with limit \(f\). Then

\[\int_A f d\mu = \lim_{n \to \infty} \int_A f_n d\mu, \quad A \in \mathcal{A} \]

Proof. First, note that \(f_n(x) \leq f(x)\) so that

\[\lim_{n} \int_A f_n d\mu \leq \int f d\mu \]

It is remained to prove the opposite inequality.

For this it is enough to show that for any simple \(\varphi\) such that \(0 \leq \varphi \leq f\) the following inequality holds

\[\int_A \varphi d\mu \leq \lim_{n} \int_A f_n d\mu \]

Take \(0 < c < 1\). Define

\[A_n = \{x \in A : f_n(x) \geq c\varphi(x)\} \]

then \(A_n \subset A_{n+1}\) and \(A = \bigcup_{n=1}^{\infty} A_n\).

Now observe

\[c \int_A \varphi d\mu = \int_A c\varphi d\mu = \lim_{n \to \infty} \int_{A_n} c\varphi d\mu \leq \]

(this is a consequence of \(\sigma\)-additivity of \(\phi\) proved above)

\[\leq \lim_{n \to \infty} \int_{A_n} f_n d\mu \leq \lim_{n \to \infty} \int_A f_n d\mu \]

Pass to the limit \(c \to 1\). \(\blacksquare\)

Theorem 7.8 Let \(f = f_1 + f_2, f_1, f_2 \in L^1(\mu)\). Then \(f \in L^1(\mu)\) and

\[\int f d\mu = \int f_1 d\mu + \int f_2 d\mu \]
Proof. First, let \(f_1, f_2 \geq 0 \). If they are simple then the result is trivial. Otherwise, choose monotonically increasing sequences \((\varphi_{n,1}), (\varphi_{n,2})\) such that \(\varphi_{n,1} \to f_1 \) and \(\varphi_{n,2} \to f_2 \).

Then for \(\varphi_n = \varphi_{n,1} + \varphi_{n,2} \)

\[
\int \varphi_n d\mu = \int \varphi_{n,1} d\mu + \int \varphi_{n,2} d\mu
\]

and the result follows from the previous theorem.

If \(f_1 \geq 0 \) and \(f_2 \leq 0 \) put

\[
A = \{ x : f(x) \geq 0 \}, \quad B = \{ x : f(x) < 0 \}
\]

Then \(f, f_1 \) and \(-f_2 \) are non-negative on \(A \).

Hence

\[
\int_A f_1 = \int_A f d\mu + \int_A (-f_2) d\mu
\]

Similarly

\[
\int_B (-f_2) d\mu = \int_B f_1 d\mu + \int_B (-f) d\mu
\]

The result follows from the additivity of integral. ■

Theorem 7.9 Let \(A \in \mathcal{A} \), \((f_n) \) be a sequence of non-negative measurable functions and

\[
f(x) = \sum_{n=1}^{\infty} f_n(x), \quad x \in A
\]

Then

\[
\int_A f d\mu = \sum_{n=1}^{\infty} \int_A f_n d\mu
\]

Exercise. Prove the theorem.

Theorem 7.10 (Fatou’s lemma)

If \((f_n) \) is a sequence of non-negative measurable functions defined a.e. and

\[
f(x) = \lim_{n \to \infty} f_n(x)
\]

then

\[
\int_A f d\mu \leq \lim_{n \to \infty} \int_A f_n d\mu
\]

\[A \in \mathcal{A} \]
Proof. Put \(g_n(x) = \inf_{i \geq n} f_i(x) \)
Then by definition of the lower limit \(\lim_{n \to \infty} g_n(x) = f(x) \).
Moreover, \(g_n \leq g_{n+1}, g_n \leq f_n \). By the monotone convergence theorem
\[
\int_A f d\mu = \lim_n \int_A g_n d\mu = \lim_n \int_A g_n d\mu \leq \lim_n \int_A f_n d\mu.
\]

Theorem 7.11 (Lebesgue’s dominated convergence theorem)
Let \(A \in \mathcal{A}, \ (f_n) \) be a sequence of measurable functions such that \(f_n(x) \to f(x) \) \((x \in A) \).
Suppose there exists a function \(g \in L^1(\mu) \) on \(A \) such that\[|f_n(x)| \leq g(x) \]
Then
\[
\lim_n \int_A f_n d\mu = \int_A f d\mu.
\]

Proof. From \(|f_n(x)| \leq g(x) \) it follows that \(f_n \in L^1(\mu) \). Since \(f_n + g \geq 0 \) and \(f + g \geq 0 \), by Fatou’s lemma it follows
\[
\int_A (f + g) d\mu \leq \lim_n \int_A (f_n + g)
\]
or
\[
\int_A f d\mu \leq \lim_n \int_A f_n d\mu.
\]
Since \(g - f_n \geq 0 \) we have similarly
\[
\int_A (g - f) d\mu \leq \lim_n \int_A (g - f_n) d\mu
\]
so that
\[
-\int_A f d\mu \leq -\lim_n \int_A f_n d\mu
\]
which is the same as
\[
\int_A f d\mu \geq \lim_n \int_A f_n d\mu
\]
This proves that
\[
\lim_n \int_A f_n d\mu = \lim_n \int_A f_n d\mu = \int_A f d\mu.
\]
8 Comparison of the Riemann and the Lebesgue integral

To distinguish we denote the Riemann integral by \((R) \int_a^b f(x)dx\) and the Lebesgue integral by \((L) \int_a^b f(x)dx\).

Theorem 8.1 If a function \(f\) is Riemann integrable on \([a, b]\) then it is also Lebesgue integrable on \([a, b]\) and
\[
(L) \int_a^b f(x)dx = (R) \int_a^b f(x)dx.
\]

Proof. Boundedness of a function is a necessary condition of being Riemann integrable. On the other hand, every bounded measurable function is Lebesgue integrable. So it is enough to prove that if a function \(f\) is Riemann integrable then it is measurable.

Consider a partition \(\pi_m\) of \([a, b]\) on \(n = 2^m\) equal parts by points \(a = x_0 < x_1 < \ldots < x_{n-1} < x_n = b\) and set
\[
\underline{f}_m(x) = \sum_{k=0}^{2^m-1} m_k \chi_k(x), \quad \overline{f}_m(x) = \sum_{k=0}^{2^m-1} M_k \chi_k(x),
\]
where \(\chi_k\) is a characteristic function of \([x_k, x_{k+1})\) clearly,
\[
\underline{f}_1(x) \leq \underline{f}_2(x) \leq \ldots \leq f(x),
\]
\[
\overline{f}_1(x) \geq \overline{f}_2(x) \geq \ldots \geq f(x).
\]

Therefore the limits
\[
f(x) = \lim_{m \to \infty} \underline{f}_m(x), \quad \overline{f}(x) = \lim_{m \to \infty} \overline{f}_m(x)
\]
exist and are measurable. Note that \(\underline{f}(x) \leq f(x) \leq \overline{f}(x)\). Since \(\underline{f}_m\) and \(\overline{f}_m\) are simple measurable functions, we have
\[
(L) \int_a^b \underline{f}_m(x)dx \leq (L) \int_a^b f(x)dx \leq (L) \int_a^b \overline{f}(x)dx \leq (L) \int_a^b \overline{f}_m(x)dx.
\]

Moreover,
\[
(L) \int_a^b \underline{f}_m(x)dx = \sum_{k=0}^{2^m-1} m_k \Delta x_k = s(f, \pi_m)
\]
and similarly
\[(L) \int_a^b \overline{f}_m(x) = \overline{s}(f, \pi_m).\]

So
\[\underline{s}(f, \pi_m) \leq (L) \int_a^b f(x) dx \leq (L) \int_a^b \overline{f}(x) dx \leq \overline{s}(f, \pi_m).\]

Since \(f\) is Riemann integrable,
\[\lim_{m \to \infty} \underline{s}(f, \pi_m) = \lim_{m \to \infty} \overline{s}(f, \pi_m) = (R) \int_a^b f(x) dx.\]

Therefore
\[(L) \int_a^b (\overline{f}(x) - f(x)) dx = 0\]

and since \(\overline{f} \geq f\) we conclude that
\[f = \overline{f} = \underline{f}\] almost everywhere.

From this measurability of \(f\) follows. \(\blacksquare\)
9 L^p-spaces

Let (X, \mathcal{A}, μ) be a measure space. In this section we study $L^p(X, \mathcal{A}, \mu)$-spaces which occur frequently in analysis.

9.1 Auxiliary facts

Lemma 9.1 Let p and q be real numbers such that $p > 1$, $\frac{1}{p} + \frac{1}{q} = 1$ (this numbers are called conjugate). Then for any $a > 0$, $b > 0$ the inequality

$$ab \leq \frac{a^p}{p} + \frac{b^q}{q}.$$

holds.

Proof. Note that $\varphi(t) := \frac{t^p}{p} + \frac{1}{q} - t$ with $t \geq 0$ has the only minimum at $t = 1$. It follows that

$$t \leq \frac{t^p}{p} + \frac{1}{q}.$$

Then letting $t = ab^{-\frac{1}{p-1}}$ we obtain

$$\frac{a^pb^{-q}}{p} + \frac{1}{q} \geq ab^{-\frac{1}{p-1}},$$

and the result follows. ■

Lemma 9.2 Let $p \geq 1$, $a, b \in \mathbb{R}$. Then the inequality

$$|a + b|^p \leq 2^{p-1}(|a|^p + |b|^p).$$

holds.

Proof. For $p = 1$ the statement is obvious. For $p > 1$ the function $y = x^p$, $x \geq 0$ is convex since $y'' \geq 0$. Therefore

$$\left(\frac{|a| + |b|}{2}\right)^p \leq \frac{|a|^p + |b|^p}{2}.$$ ■

37
9.2 The spaces L^p, $1 \leq p < \infty$. Definition

Recall that two measurable functions are said to be equivalent (with respect to the measure μ) if they are equal μ-almost everywhere.

The space $L^p = L^p(X, \mathcal{A}, \mu)$ consists of all μ-equivalence classes of \mathcal{A}-measurable functions f such that $|f|^p$ has finite integral over X with respect to μ.

We set
\[\|f\|_p := \left(\int_X |f|^p d\mu \right)^{1/p}. \]

9.3 Hölder’s inequality

Theorem 9.3 Let $p > 1$, $\frac{1}{p} + \frac{1}{q} = 1$. Let f and g be measurable functions, $|f|^p$ and $|g|^q$ be integrable. Then fg is integrable and the inequality
\[\int_X |fg| d\mu \leq \left(\int_X |f|^p d\mu \right)^{1/p} \left(\int_X |g|^q d\mu \right)^{1/q}. \]

Proof. It suffices to consider the case
\[\|f\|_p > 0, \|g\|_q > 0. \]

Let
\[a = |f(x)||f|^{-1}_p, \quad b = |g(x)||g|^{-1}_q. \]

By Lemma 1
\[\frac{|f(x)g(x)|}{\|f\|_p \|g\|_q} \leq \frac{|f(x)|^p}{p\|f\|_p^p} + \frac{|g(x)|^q}{q\|g\|_q^q}. \]

After integration we obtain
\[\|f\|_p^{-1} \|g\|_q^{-1} \int_X |fg| d\mu \leq \frac{1}{p} + \frac{1}{q} = 1. \]

9.4 Minkowski’s inequality

Theorem 9.4 If $f, g \in L^p$, $p \geq 1$, then $f + g \in L^p$ and
\[\|f + g\|_p \leq \|f\|_p + \|g\|_p. \]
Proof. If \(\|f\|_p \) and \(\|g\|_p \) are finite then by Lemma 2 \(|f + g|^p \) is integrable and \(\|f + g\|_p \) is well-defined.

\[
|f(x) + g(x)|^p = |f(x) + g(x)||f(x) + g(x)|^{p-1} \leq |f(x)||f(x) + g(x)|^{p-1} + |g(x)||f(x) + g(x)|^{p-1}.
\]

Integrating the last inequality and using Hölder’s inequality we obtain

\[
\int_X |f + g|^p d\mu \leq \left(\int_X |f|^p d\mu \right)^{1/p} \left(\int_X |f + g|^{(p-1)q} d\mu \right)^{1/q} + \left(\int_X |g|^p d\mu \right)^{1/p} \left(\int_X |f + g|^{(p-1)q} d\mu \right)^{1/q}.
\]

The result follows. ■

9.5 \(L^p, 1 \leq p < \infty \), is a Banach space

It is readily seen from the properties of an integral and Theorem 9.3 that \(L^p, 1 \leq p < \infty \), is a vector space. We introduced the quantity \(\|f\|_p \). Let us show that it defines a norm on \(L^p, 1 \leq p < \infty \). Indeed,

1. By the definition \(\|f\|_p \geq 0 \).
2. \(\|f\|_p = 0 \implies f(x) = 0 \) for \(\mu \)-almost all \(x \in X \). Since \(L^p \) consists of \(\mu \)-equivalence classes, it follows that \(f \sim 0 \).
3. Obviously, \(\|\alpha f\|_p = |\alpha|\|f\|_p \).
4. From Minkowski’s inequality it follows that \(\|f + g\|_p \leq \|f\|_p + \|g\|_p \).

So \(L^p, 1 \leq p < \infty \), is a normed space.

Theorem 9.5 \(L^p, 1 \leq p < \infty \), is a Banach space.

Proof. It remains to prove the completeness.

Let \((f_n) \) be a Cauchy sequence in \(L^p \). Then there exists a subsequence \((f_{n_k}) (k \in \mathbb{N}) \) with \(n_k \) increasing such that

\[
\|f_m - f_{n_k}\|_p < \frac{1}{2^k} \quad \forall m \geq n_k.
\]

Then

\[
\sum_{i=1}^{k} \|f_{n_{i+1}} - f_{n_i}\|_p < 1.
\]

39
Let
\[g_k := |f_{n_1}| + |f_{n_2} - f_{n_1}| + \ldots + |f_{n_{k+1}} - f_{n_k}|. \]
Then \(g_k \) is monotonically increasing. Using Minkowski’s inequality we have
\[
\|g_k^p\|_1 = \|g_k\|^p_p \leq \left(\|f_{n_1}\|_p + \sum_{i=1}^{k} \|f_{n_{i+1}} - f_{n_i}\|_p \right)^p < (\|f_{n_1}\|_p + 1)^p.
\]
Put
\[g(x) := \lim_k g_k(x). \]
By the monotone convergence theorem
\[
\lim_k \int_X g_k^p d\mu = \int_A g^p d\mu.
\]
Moreover, the limit is finite since \(\|g_k^p\|_1 \leq C = (\|f_{n_1}\|_p + 1)^p \).

Therefore
\[
|f_{n_1}| + \sum_{j=1}^{\infty} |f_{n_{j+1}} - f_{n_j}| \text{ converges almost everywhere}
\]
and so does
\[
f_{n_1} + \sum_{j=1}^{\infty} (f_{n_{j+1}} - f_{n_j}),
\]
which means that
\[
f_{n_1} + \sum_{j=1}^{N} (f_{n_{j+1}} - f_{n_j}) = f_{n_{N+1}} \text{ converges almost everywhere as } N \to \infty.
\]
Define
\[f(x) := \lim_{k \to \infty} f_{n_k}(x) \]
where the limit exists and zero on the complement. So \(f \) is measurable.

Let \(\epsilon > 0 \) be such that for \(n, m > N \)
\[
\|f_n - f_m\|_p^p = \int_X |f_n - f_m|^p d\mu < \epsilon/2.
\]
Then by Fatou’s lemma
\[
\int_X |f - f_m|^p d\mu = \int_X \lim_k |f_{n_k} - f_m|^p d\mu \leq \lim_k \int_X |f_{n_k} - f_m|^p d\mu
\]
which is less than \(\epsilon \) for \(m > N \). This proves that
\[
\|f - f_m\|_p \to 0 \text{ as } m \to \infty. \]

40